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ABSTRACT 

Decidability results in modal and tense logics were obtained through tt~e finite 
model property. This paper shows that the method is limited, since there exists 
a decidable extension of modal T that lacks the finite model property. The 
decidability of the system is proved through a new method, the reduction method, 
(using a theorem of Rabin). 

Introduction 

We give an example of the incompleteness of  the technique of using the finite 

model property (f.m.p.) to prove decidability in modal logic. We present a decidable, 

finitely axiomatizable normal logic between Tand $4 which lacks the f.m.p. Our 

strategy is the following: 

We shall define an auxiliary tense system M ,  in § 1. In § 2 we shall provide it 

with semantics. In § 3 we shall show (by methods of [3]) that it lacks the finite 

model property. In § 4 we show that M ,  is decidable. Finally in 5 §we shall con- 

struct a modal system G, which is a finitely axiomatizable extension of T which 

lacks the fiinite model property. We shall also give a 1-1 interpretation of G,  in 

M , ,  and thus obtain the decidability of G,. 

The particular systems M ,  and G,  are of no special importance (except for the 

fact that G, is between T and $4). The method of proof however, especially the 

proof  of decidability, is of great interest as it presents a new technique for ob- 

taining decidability results in modal logics. 

1. The system M, 

Our language contains, besides the connectives of classical propositional logic, 

Received July 6, 1969 and in revised form August 2, 1971 

478 



Vol. 10, 1971 MODAL AND TENSE LOGICS I 479 

the connectives G¢ (¢ will always be true) and Y¢ (~b was true yesterday).  Our  

ax ioms are:  

all the truth functional  tautologies,  modus  ponens,  substi tut ion and:  

AXIOMS.* 

(1) G(¢ - O) --* (G¢ --, GO) 

(2) Y(q~ + 0)  ~ (Y¢  ~ Y~) 

(3) GO-~ GGc~ 

(4) ¢ + ~ o ~ Y ¢  

(5) ~G(G A ~ ¢ ) ;  ~ Y ( ¢  A ~ ¢ )  

(6) Y ~ ¢  , ~ ~ Y ¢  

(7) ~ ¢ - . Y ~ 6 ¢  
(8) ~ G ~  Y ~  ¢ ~  ~ ¢  V ~Gq~ 
(9) t- q~ ~ I- G ¢ ,  b Yq~. (this is a group of  inference rules). 

2. Semantics 

Let T be any nonempty  set ( thought  of  as a set o f  moments  of  time), T -  struc- 

tures  are of  the fo rm A_ = (At, < , r , 0 )  t~  T where A t is a funct ion assigning 

values 0, 1 to each a tomic sentence. < is a b inary relat ion on T, r is a unary  

funct ion on T, 0~ T a n d  the following holds:  

(10) < is transit ive 

(11) r ( x ) < x ,  x ~ T  

(12) Vx3y(x < y) 

(13) Vx3y(x = r(y)). 

(14) x < y - - + ( x < r ( y )  or x = r(y)) .  

Satisfaction is defined as follows: 

Let  A be a T-structure and let x e T, then the value of  4~ at x (notat ion [~b]~) 

is defined by induct ion:  

(15) [P]x = value given by Ax, for  a tomic  p .  

(16) [ q S A ~ ] , =  1 ifl" [qS]~ = 1 and [ ~ ] ~ =  1 

[ ~ b ] x  = 1 iff [ ¢ ]  [4~]x = 0 

(17) [Go, I x =  1 i f f [ q S ] y =  1 for  all y s u c h  that  x < y  

(l s) [ r4& = 1 iv = I .  

* Our axioms and conditions are not independent. We do not bother with independence in 
this paper, as all we want is to show the existence of a certain kind of modal logic. 
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We say that  a sentence 4b is valid iff for all nonempty  T and all T-structures 

= i .  

THEOREM 19. All  ax ioms are valid. 

PROOF. 

(3) follows f rom (10). 

(4), (5) follows f rom (11), (12) and (13). 

(6) follows f rom r being a funct ion 

(7) follows f rom (12). 

(8) follows f rom 04 ) .  

The reader  can verify that  the inference rules preserve validity. 

DEFINITION. A theory A is complete  iff for  all ~b, q$ e A or ,,~ 4b E A.  

LEMMA 20. Let  A be a complete and consistent theory then: 

(a) I f  ,,~Gc~ ~ A then there exists a complete theory A ° such that N q5 ~ A  ~ 

and f o r  every 4' such that G!4' ~ A be have that 4' ~ A ~ . 

(b) I f  ,,~ Yc~ 6 A  then a A+ exists with s imi lar  properties. 

(c) T h e r e  exists a complete  and consistent ~ such that 

(c l )  G4'~A--> 4'~N 
(c2) 4 ' e A ~  Y 4 ' e A ' .  

PROOF. The  way to get (a) and (b) is well known and is due to Makinson  

and Scott. To  get (c) we follow Lemmon-Sco t t :  

Assume {4' l G4' 6 A} k) (Y• [ ~b ~ A} is not  consistent,  so for  some 4 ' ,  qg~ we 

have:  

k4'l A "'" A4'n ~ "~ (Yq~ A "'" A Yq~m) 

k4'  A ... A 4'. -* A-" 

I-6(4,, A -"  A 4'n) --* G ,-- Y(¢1 A "" A era) 

t'G4'~ A "'" A G4'n --* G ~ Y((a~ A "'" A (On,) 

~- "~ G "" Y((a~ A ' "  A O,n) ~ "" (G4'a A "" A G4'n) 

but  I-4b 1 A  "-" A q~ --* , - ,G,~ Y(gb~ A "" A q~) .  So ,-, (G4',  A "" A G4 ' , )~A  

but  A 45i E A, a contradict ion.  

N o w  extend this set to a complete  theory A s . 

DEFNmON 21. A < A' iff for  every 4' ,  G 4 ' E A  --+ 4 ' c A ' . *  

LEMMA 22. A < A '  and A'  < A" implies A < A". 

* From now on A, O, . . .  range over complete and consistent theories. 
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PROOF. Use F G(a ~ GGO. 

LEMMA 23. For any  0 , ~ :  I f  ~ Y ( o ~ A  a n d  ,,~ Y ~ e A  then A4, = A o. 

PROOF. Let  ~ e A~, ~-, c~ ~ A S . 

W e  know tha t  for  al l  fl, Yfl ~ A --* fl ~ Ao and  fl ~ A S. Therefore  ~ Y~ e A and  

so since F ,~ Yc~ ~ Y ~ ~ we get  tha t  Y ,-~ ~ ~ A and  so ~ ~ E Ao. A cont rad ic t ion .  

F r o m  now on let  us call  the  unique  theory  o f  (23), A t .  

LEMMA 24. / f  ,-~ Y ¢  e A then A S < A .  

PROOF. Let  G C e A , ,  and  ~ $ e A .  Since F ~ $ ~  Y ~ G ¢  we get  tha t  

,,, G ¢ e  A , ,  a con t rad ic t ion .  

LEMMA 25. / f  "~ Y C e A  and A s is as in L e m m a  (20c) then (A~), = A.  

PROOF. Let  ~ ~ e A ,  and  ~ e ( A ~ ) , .  N o w  ~ c ~ e A  implies  Y-,,  ~ e A  s by  con- 

s truct ion.  But F Y ~  ~ ~ ~ Y~ and so ~ Y ~ e A  ~ and  so ~ c~e(A~), by  (23), a 

cont rad ic t ion .  

].,EMMA 26. 6) < A --> (6) < A S or 6) = AS). 

PROOF. Let  G ¢  e 6) and  -,, ¢ ~ A~ and ct e 6) and  ,-, ~ e A~. 

F/~AG/~--,G~ Y ~ / ~  (8). 

Since (c~ V ¢) A G(c¢ V ¢) e 6) we have that ~ Y~ (c~ V ~) e A and so Y(c~V T)e A 

and  so c~ V ~/e A~, a con t rad ic t ion .  

Let  6) be a given comple te  theory.  W e  now turn  to const ruct  a m o d e l  A o f  6). 

One s imple way o f  do ing  this is to take  Tas  the set o f  al l  consis tent  and  comple t e  

theories ,  to define < on T, to define r ,  etc. and  get the m o d e l  in the usual  manne r  

using Lemmas  20-26.  Since we are in teres ted  in proving  tha t  M ,  is dec idable  

we must  cons t ruc t  the m o d e l  more  carefully.  W e  begin with some definit ions.  

Let  N* be the set of  al l  finite sequences o f  na tu ra l  numbers  and  let  the empty  

sequence A e N * .  Let  * denote  conca tena t ion  o f  sequences,  and  define x e N*,  

the fol lowing funct ions cal led successorship funct ions :  

(a) y = ro(x ) = x*(O). 

(b)  y = p, (x)  = x*(2n + 1), n -> 0 .  

(c) y = s , (x)  = x*(2n + 2) ,  n > 0.  

y is said to be a successor of  x .  

F o r  each comple te  and  consis tent  theory  A and  each ~--G¢ e A, let  A * be one 

fixed theory  fulfill ing (20a). S imi lar ly  choose  for  each A a fixed N as in 

(20c). F r o m  now on A ~ and  A s become unique whenever  defined. 
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Let 19 be a given complete and consistent theory. Let M be the smallest family 

o f  theories such that  0 e M  and whenever A e M  we have that  Ay, AS e M  

and also A ' e M  for any ~b such that ~ GqSeA. M is denumerable;  so let  

F I , F  2, ... be an enumerat ion of  the elements o f  M .  

We now proceed to define a subset T _ N* and a function A: T --. M as follows 

StageO.  Let A e T  and let A ( A ) = ® .  

Stage 1. 

a) Let x = ro(A ) e  T and let A(x) = A(A)y 

b) I f  F i e  M ,  is such that  (Fi)y = A(A), 

then let x = si(A) e T and let A(x) = Fv 

c) Let F ,  be such that 

1) Fn is of  the fo rm A(A) e for some qS. 

2) For  no k do we have A(A) = ( F ) y . . . y  (ktimes) 

then let x = p , (A)~ T and let A(x) = F , .  

Stage n + 2 .  Let x be a point  in T t h a t  was put i n T a t  stage n + l .  We 

distinguish two cases. Let x be a successor of  a y ~ T. 

1) I f  x is an r o or p,  successor, repeat the construct ion as in stage 1 usingA(x) 

as if it were ® and define the successorship relation like in the  case o f ®  of  stage 1. 

2) In case x is an s, successor, do as in previous cases except do not .follow 

instruction (a) of  stage 1. Thus in this case r0(x ) is not  in T. 

DEFINITION 27. Let < 1 be the relation on T of  being an s, or p successor (i.e. 

no use is made of  ro). Let  =< be the transitive closure o f  __< ~. 

Let y > x be the transitive closure of  the relation of  being an r o successor (i.e 

x = r~(y) for some m), (we wr i te>s ince  r® is in the past o f y a n d  so y > x  means 

x is the past o f  y ,  x < y means the same). 

LEMMA 28. X < y ~ A(x) < A(y). 

PROOF. By construct ion and (22), and definition of  A s and of  s successorship. 

LEMMA 29. X > y ~ A(y) < A(x). 

PROOF. By construct ion and by (22) and (24). 

DEFINITION 30. (a) r(x) = ro(X) if ro(X) exists (note that  in case x = sn(y) 

for some n we do not  construct  to(X)), and r(x) = y if x = s,(y) for some n. 

(b) Define x < y as follows: 
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(bl)  I f  there exists a finite set of points Yo, Y~"" Y such that Yo > x and 

Yo < Y~ and Yl > Yz and Y2 < Y3 and Y3 > Y4 and Y4 < Y~ "'" until y .  

(b2) I f  there exists a finite set of points Yo, Yl ""Y such that x < Yo and 

Yo > Y l ,  Yx < Y2, Y2 > Y3, Y3 ~ Y4"'" until y .  

THEOREM 31. (a) A(r(x)) < A(x). (b) x < y ~ A(x) < A(y). 

PROOF.* (a) follows by (24) and (25). 

The proof  of (b) is by induction on the number of points Yo"" yn. 

Case n = 0. In this case Yo = Y and follows from (28) and (29). 

Case n + 1. We distinguish two subcases: 
m (I) y, > y = y,+~,  we assume y = ro(y,), m > 1. In this case we know by 

the induction hypothesis that A(x) < A(y,). We want to show that A(x) < A(y). 

Now since n > 0 we have that y,_x < Y, (Y,-x may be taken as x in case 

n = 0 ) .  

Let y '  be the < predecessor of y ,  so A ( y ' ) <  A(y,) by construction. Since 

y , >  y we have that ro(y,) exists and that (A(y,))0 # A(y') .  So by (26) 

A(y') < (A(y.))~, = A(ro(y.) ). Assume by induction that A(y') < A(ro(yn) ) and show 

that A ( y ' ) <  A(r~+a(y.)). By construction A ( y ' ) #  A(r~+l(y.)) and therefore by 

(26) we have A(y ' )<A(r~+l(y , ) ) ,  since A(r~+l(y,)) i = A(ro(y,))y. Thus 

A(y') < A(y) and by (24) and by (29) and the induction hypothesis for y ' ,  we 

get A(x) < A(y). 

(II)  In this case we assume that y, < y. By the induction hypothesis A(x) < A(y,) 

and by (28) and (22) A(x) < A(y). 

THEOREM 32. Notice that in the definition of x < y we used a set of points 

Yo, Yl "'" Y with a special property. I f  case (b2) of (3) held then Yo > YI .  This 

means that Yl is "h igher"  than Yo in the tree (it is r~(yo) successor), and each 

Y,+I is higher in the tree than y , .  In the case of (bl)  again we get that Yx is 

higher in the tree than Yo and y,+ ~ is higher in the tree than y , .  So i f  we take 

xpy  to mean y is higher than x (through any kind of  successorship), we get 

that YoPYl "" Y (i.e., they are linearly ordered). 

DEFINITION 33. We now construct the model A.  Let T be our tree, let < ,  r 

be as in definition (30). Define [P]x = 1 iffp e A(x), for a propositional variable p .  

LEMMA 34. A is a welt defined model. 

* I am indebted to the reviewer for correcting the proof. 
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PROOF. 
(i0) holds since by definition < is transitive. 

(11) also holds by the definition of  r(x) (30). 

(12a) holds since t- ~ G(¢ A "~¢) and (13) since A s is always defined and e M .  

(14) holds ;  the p roo f  is as follows: 

Assume x < y so for some Yo"" Y,- ~ the following holds:  

X x  / 
\ 

\x. //~y~ 
r° x\ ' , , \  / ~ /  

N / \ , /  

Yo 
Fig. 1 

//Y 
/ 
/ 
/ 
/ 
/ 

/ / / / 

f y~ 
/ 

/~o 

x = r'~O'o) m > (i.:e.. x may be Yo which is b2 o f  (30)). Yo < Y t ,  Y l  >Y2,Y2 ~ Y3"'" 

until y. 

Case  n > 1. In  this case no matter  whether r(y)  = ro(y ) or is the predecessor 

o f  y we have that  x < r (y ) .  

Case  n = 0.  i.e., y = Yl. 

N o w  if x = r~(y, , )  with m ~ 0 then x < r(y) .  

I f  x = Yo and y is not  a successor o f  x then again x < r (y ) .  In  case x = Yo 

and y is a successor o f  x then either r(y)  = ro(y)  in which case x < r(y)  by (26), 

or r (y )  = x which is (14). 

LEMMA 35. [¢]x ---- 1 iff ¢ e A(X), for all ¢. 

PROOF. For  proposi t ional  variable this holds by definition. A, ~ present no 

difficulties. 

Let  G ¢ e  A(x) and let x < y .  Then by (31), A(x) < A(y),  i.e., ¢ e A(y) and so 

[ ¢ ] y  = 1 .  

Let  ~ Gq5 ~ A(x). So ,-, ~b ~ (A(x))6= F .  I f  A(x) ~ F y . - .  y (k times) for  all k ,  
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then by definition F = A(y) for  x < 1 Y, otherwise A(x) = Fy  . . . y  (k t imes) .Let  

F = Fn l  ~ M  and F y - . . y  (i t imes) be F n i e M  ( M  is closed under  the A ~ Ay 

operat ion) .  Then  by  the definition of  stage n ,  case ( lb )  we have that  

y = s,l(s, ,  (...  s ,~(x) . . . )~  T and A(y) = F and x < y .  

Let  Y~ ~ A(x) so ~ s (A(x))y; regarding r(x) ,  if r(x) = ro(x ) which is (A(x))q, 

we are finished and  if r(x) is the predecessor  of  x, then it is the case only because 

(A(x))y equals the predecessor  of  x aod  so again we are finished. 

3. M, lacks Lm.p. 

We use the results o f  Mak inson  [3]. Mak inson  extended T with 

D([]z~b ~ D3~b) A Qq~ ~ []2q 5 and this system lacks f .m.p. ,  since K]po ~ D D p o  

is not  provable  and any mode l  in which it is false is infinite. 

Our  use of  this result is as fol lows: we interpret  Mak inson ' s  system in M ,  

in such a manne r  as to have that  all Mak inson ' s  axioms hold and  []Po ~ [ ]  DPo 

does not. Therefore  there cannot  be a finite mode l  of  M ,  in which • P o  ~ [ ]  Npo 

is false since this gives rise to a finite mode l  of  Mak inson ' s  sytem in which • P o  

[ ]  Npo is false. 

DEFINITION 36. 5~b = defY(q5 A G~b). 

THEOREM 37. 

(a) ~- IS]q5 --, 

(b) t- [2](~b ~ ~)  ~ ( •~b  ~ []~k) 

(c) t- 5 (c3~¢  --, ~3¢)  A D e  ~ rs2¢ 

(d) bq~ => bUlq~ 

(e) I~- • ¢  -~ • G ~  

PROOF. We shall prove  only (c) and (e). 

By definit ion (36) we see that :  

(38) [ •gb ]x  = 1 iff [q~]y = 1 for  all y 

such tha t  r(x) < y or r(x) = y .  

Assume now that  [ •q~]x  = 1 and [[]([~2q~ ~ [ ] 3 q ~ ) ]  x _.. 1 and [[~2~b]x = 0 .  

By (13) x = r(Xo) for  some x o. Consider  Fig. 2. 

[TqEqS]x = 0 so for  some y such tha t  y = f i x )  or r(x) < y we have tha t  [DqS]y = 0. 

N o w  for  some z such tha t  z = r(y) or r(y) < z we have that  [~b]z -- 0. We 

distinguish some cases: 

(a) r(x) < y: 
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Xo 
Z 

. / y 

r(x)= x 

r(x) 

rZ(x) 
Fig. 2 

Israel J. Math., 

By (14) r (x)< r(y) or  r ( x ) =  r(y). 

( a l )  r (x )<r(y) :  Since r ( y )=  z or r ( y ) < z  we get tha t  r ( x ) < z  and  so 

[ ¢ ] .  = 1 since [ [ l ¢ ] x  = 1 .  A cont rad ic t ion .  

(a2) r(x) = r(y). A g a i n  i f  r(y)< z ,  a con t rad ic t ion  and  i f  r(y) = z, again  

a cont rad ic t ion .  

(b) Therefore  r(x)= y:  So r Z ( x ) =  z or  r 2 ( x ) <  z holds .  This  yields  tha t  

[[53qS]xo = 0 .  Since r(xo) = x < Xo we must  have tha t  [DZ~b --* D3q~]xo = 1 

and  therefore  1-D2qS]xo = 0.  So at  some u such tha t  u = x or  x < u[E]~b] ,=  0. 

u canno t  be x and  so x < u .  Therefore  for  some v such tha t  v = r(u) or  r(u) < v 

we have tha t  [q~], = 0.  

(c) Case v = r(u) :  Since x < u ,  by  (14) we conclude  tha t  x = r(u) or  x < r(u) 

and  since r(x) < x we get  tha t  r(x) < r(u) and  so r(x) < v. 

(d)  r(u) < v: In  this  case we also get  that  r(x) < v. N o w  we have a cont ra -  

d ic t ion  since [(B~b]x = 1. 

To show tha t  [ l p  ~ [ ]  D P  is no t  a t heo rem let [p ] ,~)  = 1 and  [ply  = 1 for  

al l  y such tha t  r(x) < y.  Let  1-p],2(~ = 0 so [ [ ] p  ~ D © P ] ~  = 0.  

4. Decidability of M, 

Let  N* be the set of  a l l  finite sequences o f  na tu ra l  numbers .  Let  * denote  

conca tena t ion  of  sequence. Define p , ,  s , ,  r o as before ,  i .e.,  p,(x) =x  * (2n + 1), 

s,(x) = x * (2n + 2) and  ro(x) = x * (0).  Thus,  p , ,  s , ,  r o, n > 0  are funct ions :  

N* ~ N * .  Let  A denote  the  empty  sequence.  W e  shaU refer  to p , ,  s , ,  r o as suc- 

cessor  functions.  Let  x <1  Y mean  y = p,(x) for  some n,x  < 2  y m e a n  y=s~(x) 

for  some n and  x p y  mean  x < l Y  V x < 2 y .  Let  < be the t ransi t ive closure o f  

p .  Let  R be the t ransi t ive closure of  xpy V y = ro(x). 

THEOREM 40. (Rabin I-4]). The monadic second-order theory (with variables 

for finite sets also) of(N*,  A, s, Pro, ro ,  < ,  R) is decidable. 

In  o rde r  to  get tha t  M .  is dec idable  we have to  express its semant ics  in this  
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language. We gave the completeness theorem in §2 with anticipation for this 

section. 

DESCRIPTION OF SEMANTICS 

(41) Let x > y  mean 5m(y = r"~ (x)). We can define this in terms of the other 

relations. 

(42) Let T O _~ N* be such that the following holds: 

(a) x e T  o ~ so(x ) ~ T  O 

(b) O t T  o 

(c) i f  y ~ To then no successor of  y is in T o 

(d) if x e T o / ~  x < 2 y  then ro(y ) ~ T  o 

(e) i f x e T  o and x_-<ly  then ro(y) eTo 

(f) ro(A) e T o. Vx3u(x <= u). 

Define r(x) = ro(X) if ro(x)e To and r(x) = y = predecessor of x otherwise 

(i.e. in case y < zx) for x e To. 

Define x < y iff there exists a finite set C, linearly ordered by R,  such that:  

(1) I f  Yo is the first element of  C,  then either x = Yo or x = r~(yo) for some m.  

(2) For every Zo, Z l , z z ~ C  such that z 1 is a successor in C of z o and z z is a 

successor in C of z~ the following holds: if z o ___ z 1 then zl > z e and if z o > z~ 

then z 1 < z2. 

(3) For every zo, zx e C such that zl is successor of Zo we have that Zo > zl 

or Zo < z l .  

(4) Yo ---< the successor of  Yo in C.  

(5) yeC. 

REMARK 43. (42) (a)-(f) are all definable in our language. Similarly r(x), x < y 

and whatever is needed. 

THEOREM 44. M ,  is complete for this semantics. 

PROOF. Our definitions here are exactly the definitions of  §2 (for the definition 

of x < y see Theorem 32). So Lemmas 43 and 35 give us completeness. 

THEOREM 45. M ,  is primitively recursively decidable. 

PROOF. We express in the language of N* the assertion that q5 is true in all 

models for any formula ¢ .  To do this we associate with any formula q5 a formula 

¢*(y) in the language of N* with y free as follows: 
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(Pi)* = Y e Ci, with p~ a propositional variable and C~ set variable. 

(~b A 0)* = 4,* A ~* 
(~@* = ~~, 

(G~b)* = y ~ T o A (Vz e To)(y < z --+ ~b*(z)), where T O is a set variable and 

< is the relation defined in (42)-(43) above. 

(YqS)* = (z = r(y))A~b*(z) where r is the function defined in(42)-(43)above. 

What qS*(y) says is that ~b is true at the point y .  (The reader can verify this by 

induction, taking C, = {x I Pi true at x}). We shall now say that ~b is true at all 

models, i.e., (VT 0 such that (42) holds) (VC 1 ... C, ~ To)(Vye To)¢*(y), where 

~b has p,'"pn as atomic propositions. Now since this sentence is decidable 

in N*, M ,  is decidable. 

5. A decidable, finitely axiomatizable extension of T without the finite model 

property 

We have seen in the preceding sections that M ,  does not have the f.m.p, and 

is decidable. We have interpreted Makinson's system in M ,  in such a manner 

as to have Theorem 37. 

In this section we show that G , ,  the extension of Makinson's system, obtained 

by taking all modal sentences holding in M , ,  is finitely axiomatizable. 

G, is the extension of Makinson's system with the following axioms: 

(52) ¢ A [ ]  ¢ A "-' IE12¢ " ~ o (o  ¢ A ~ IEI¢) 

(53) Fl~ A ~b A Q~ A ~ F-12¢ ~ 0 ( 0  ~ A ~2¢  A ,- ' [ ]3¢ A ~2c0 

(54) [3~ A ,,.IS12~ ~ ( l~ (~E ] f f  ~ ~) V E](,-.FI~ ~ ~~)) 

(55) FI~, A ,-" £]2¢ A 0(I-]~ A ~ [3¢) ~ I]]2~ 

(56) E]~b A ISle, A ~ IElZ~ --, []([]~, ~ E]~b). 

THEOREM 60. Taking ~ as Y(q5 A G~) we get that all axioms of G, are 

valid in M , .  

LEMMA 61. Let [[]]q~]x = 1,[~D2q~]x = 1 then r(x) is the only point y 

such that [~ V]c~]r = 1 and y = r(x) or r(x)< y hold. 

PROOf. See Theorem 37, Cases (a) and (b). 

Let us now examine each axiom. 

AXIOM 52. If  [¢ A [3¢ A ~ Z]2~]~ = 1 then [~  [~¢ A z:z¢]r(~) = 1. 
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AXIOM 53. I f  the antecedent is true at x then the consequent is true at Xo 

where r(xo) = x .  

AXIOM 54. This follows from (38) and from (61). 

AXIOM 55. Let [ S x  A ~ [320]x = 1 and let [ o ( C l e  A ~ N0]x  = 1, so for 

some y such that r(x) = y or r(x) < y [ D e  A ~ [30]y = 1, by (61) y = r(x) .  

Therefore [[3c~],rx) = 1 and so for every z such that r2(x) = z or r2(x) < z we 

have [e]~ = 1. In particular this holds for r(x) and all z such that r(x) < z .  So 

[[3e]x = 1. Now we cannot have [ ~  Fq2c~]x = 1 since then by (61) we shall 

have [ ~  5 e ] , ( x ) =  1. 

AXIOM 56. [[~q~ A [ 3 0  A ~ D 2 0 ] x  = 1 implies [ ~ [Z]0] , (x)= 1 and 

[~b],(~) = 1 and by (61) r(x) < y A y # r(x) implies [[30],(~) = 1. Conversely 

[ [30] r  = 1 implies r(x) # y and r(x) < y .  Now assume [ [30 ] ,  = 1 so r(x) < y 

and r(x) # y and so r(y) = r(x) or r(x) < r(y) and therefore for all z such that  

r(y) < z or z = r(y) we have r(x) < z or r(x) = z and so [qS], = 1. So [rq¢]y = 1. 

We now want to show that the interpretation (60)is &ithful.  For this purpose 

we give a series of lemmas and a Henkin-Scott type completeness proof  and con- 

struct a model with relations < and r ,  that fulfill the requirements of  the semantics 

of  M ,  and such that the modal accessibility relation R of our model is related 

to < and r exactly according to the syntactical translation of (60). 

LEMMA 62. Let  k be a complete theory that [30 A ~ [320 c A ,  Then  the 

Jol lowing set is consistent. 

{e I [3e ~ A} u {~ [30} u {  ~¢10 ~A}. 

PROOF. Otherwise 

k0q. A... Ae , - ,  (o¢~ A-.. A o¢~- ,  1-10) 

also 

therefore 

So 

ko(¢., A... A ¢=)-* o¢1 A... A o¢,,, 

A ~, -~ (o A ¢, ~ rs~), F [ ]  A ¢~ ~ N( o A ¢~ ~ [3@. 
i f i f 
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Since A4~eA we get by (51) o ( <> A i4i A ~ []O)eA that is 

~ [] (~  o A ~ V D~)  e A or ~ F-J(o A ~ -~ De)  e A ,  
i i 

a contradiction. 

Extend this set to a complete theory and denote it by A~. 

LEMMA 65. In notation of (62) the following is consistent 

{~< 1 m~< ~ A} u { [ ]20 a ,-, [ ]30} u {,-, mfl I " ~ ~ A} u { m~, I m~, ~ A}. 

PROOF. O t h e r w i s e  

F A ~ i A ~ 2 ¢ A ~ D S C A  A ~2"~i"-~ Vi[ ] f l i  
i i 

also 

SO 

F V iD3 "~ [ ]  V i,Bi 

I- A ~ z ~ ( D 2 ~ ' A  ~ E ] a ~ A  fq2 A ~'i ~ DVi f l i ) .  
/ i 

We conclude by necessitation and the fact that [] A ~i  •A  that 

D(D2¢ A ~ D3¢ A ~2 A ~, ~ [ ]  v 3~) 
i 

is in A. 

Now by (53) since [] A~, •A and ~(V fli)6A and ~ ¢  A ~'  [-]2¢ 6 A  w e  get 

that 

o (o  ~ (VflD A G2¢ A ~ D 3 ¢  A G2 A~,D)~ A. 

And so 

~ [2](" 0 ,--, V fl~ V ~(FI2¢ A [Z]3¢ A I-I 2 A ~,,))~ A 
i 

that is "v B(G2¢ A ~D3~  A 1~2A ~'i ~ DV fl i)ea 

a contradiction. 

Extend this theory to a complete A s. 

DEFINITION 67. ARA' iff (def) [3q~ • A -~ q~ • A'. 

LEMMA 68. AoRA, ARA0, ASRA, ARAS. 

PROOF. By construction. 

LEMMA 69. A0, = A~,,. 
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PROOF. Assume D~'I A "~ [32~1 A [~1~2 /~ "~' [-~2~/2 ~ A ,  and let ~ e A,1 and 

,-~ 0~ ~ A¢, 2 . 

By (54) we have that 

Now since ARAb, the second cannot be in A so N( ,-~ []~'1 ~ a ) e A .  We now 

conclude by (56) and (68) that Vq~k I ,~ N~2 e A~_, and ( ~  [N~k~ ~ ~) ~ A~, 2 which 

contradicts ~ ct e A~, 2 . 

LBMMA 70. (AS)D~ = A. 

PROOF. We have to show that 

This follows by construction. So since D2~ A ~ [ ] 3 ~ e A  s we get that (As)D, 

is defined and unique. 

DEFINITION 71. We now define r ,  and < .  r(A) equals A~, if it exists and A 

otherwise (i.e. if  for no ~O do we have ~¢,  A ~ E]2~ / e A ) ,  Define A < A' as 

follows: 

(a) if A = r(F) and r(F) ~ F (i.e. A = F~,) and FRA' and A' # A then 

A < ,  A'. In particular we get that F~, <~ F (FRF always holds). 

(b) if r(F) = F then if FRA' then F <hA ' .  In particular F < F .  

(c) Let < be the transitive closure of < ,  w <b- 

REMARK. We have in particular that r(A) < A. 

LEMMA 72. l f  A = r(F) and A < A' then FRA' .  

PROOF. Since < was defined as the transitive closure of < ,  w < b it is enough 

to examine a few cases (i.e. proof  by induction on the length of the sequence 

leading from A to A'). 

The first two cases deal with length 1. 

Case 1. Corresponding to (a) of (71) it is clear that FRA' .  Notice that in our 

case the < sequence is of length 1 and begins with instance of(a)  and so A # A' .  

Case 2. Corresponding to (b) of  (71) again FRA' but we may have A = A'.  

The remaining cases deal with the induction step. 

Now assume A < As < - ' - <  A, < A', by induction hypothesis assume that 

FRA, holds and if A ~ F (i.e. the sequence begins with use of < , )  then also 

A # A . .  
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Consider case 3, for A <,A~ and Dn <hA' .  

Case 3. Assume that r ( F ) = A  and FRA n and A ~ A  n and A n ~ ,  and 

An # A' and ~ R A ' .  Also assume that A = F~. 

We want to show that FRA' and A # A'. 

A ~  =r(@ 
Fig. 3 

Let Dfl e F .  We must show that f le  A'. 

(a) Vq2fleF: so VqfleA, so we have in • the following sentence: 

V]0~ A ~ [ ]2  A 0 ([]fl A ~ []~) for some 

since An= r(qb) and A n ~ ~b holds. So by (55) [32fl e (I) and so []/~ ~ A' and so 
/ /ea' .  

(b) , ~ N z f l e F .  Therefore F a = A. Now by axiom (56), since A = F¢, 

V](~/~ ~ £ ]¢ )e  F .  We want to show now that [ ] ¢  e A n. Now since A n # A, 

there exists a 6, 6~A A "~6 e An and so by axiom (54) Vq(,,~ [~¢ ~ 6 ) e F  and so 

N [Z¢ cAn since ,~6 ~ A n. We conclude that D~O e An and therefore D/3 e An. 

Now continue as in (a). 

Now we have that D e  e An (see (b) above) therefore 5 2 ¢  ~ • by (b) above 

and so [ ]¢  ~ A' and therefore A # A '  (which is the second thing we had to prove). 

Consider case 4 for A <aA1 and A n < hA'. 

Case 4. Assume that r ( F ) = F ~ = A  and FRA, and A ~ A  n and AnRA' 

and r(A~) = A n 

F 0 = An A' 

Assume 5/~ s F ,  we must show that/~ s h ' .  

In this case again we have D e  s A, and so [3/? s F ~ ~ / / e  An(by(a) and (b) 

of case 3). 

To show that A ~ A' ,  notice that since r(An) = An, ~ ¢  e An ~ [-32¢ e An 

so D e  e A' that is again A ~ A' since -,~ ~ ¢  e A. 

Consider case 5 where A <bAx and A n < ,A ' .  
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Case 5. Assume r(A) = A, r(~) = A, = ~ ,  and ORA' 

hypothesis A R A .  

493 

and by induction 

Fig. 4 

(e.g. the analogue of Case 3); we must show ARA'. But in our case, r(A) = A so 

[ ] / / e  A ~ ~2]~ e h and so we have that (a) of  case 3 holds. Consider case 6 with 

A <bA~ and A, <hA ' .  

Case 6. Let r(A) = A, ARA,, r(A,) = A,. 

In this case []/1 e A --* 52lt  e A and so [5]/1 e A, and so [512/1 e A, and so [~/1 e A. 

Thus Lemma (72) is proved. 

TtIEOREM 73. A < F and A ~ r(F) ~ A < r(F).  

PROOF. If  A < F we have a sequence leading from A to F .  

Case 1. The sequence begins with r(A) = A, (Case b). 

& 

i f "  r(P)=l" 

r) r(r)= r~ 

Fig. 5 

Let us show that ARr(F). Let [~/1 ~ A. We have []/1~ A ~ 71z/1 ~ A ~ 71/1~ F 

/1~ r(F).  Now we have AR r(F) and so A < r(F),  by definition. 

Case 2. The sequence begins with case (a), i.e., A = r (~) ,  A ~ ~ .  So by 

what we proved in (72) (more specifically the induction hypothesis of (72)) 

% :A _ 

Fig. 6 
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We get qbRF and A ~ F.  

Now assume Nfl ~ A and ~ fl ~ F~ and so ~ U]fl ~ F .  Now since ~ R F  we have 

[S]2fl ~ qb and therefore ~p -- ~ ,  i.e. N Dfl ~ A. Now A ~ U, so for some 6, 

6 e A, ,-~ 6 e F .  We then have, by (54) [](,-~ Dfl ~ 6) ~ (I), so ,-, []fl ~ 6 ~ F so 

6 ~ F ,  a contradiction. 

So we have that ARF, and since F,  ¢ A we get that A < F, .  

THEOREM 74. ARA' i f f  (r(A) = A' or r(A) < A'). 

PROOF. If  ARA' and r(A) ~ A' then r(A) < A' by definition, if r(A) = A' 

then ARA' .  I f  r(A) < A' then ARA' by (72). 

THEOREM 75. < and r fulfill Theorem 75. < and r fulfi l l i(l l)-(14).  

PROOF. 

(10) by definition 

(11) by (71)(a) and (b) 

(12-13) by (70) and the definition of r .  

(14) by (73). 

THEOREM 76. G, is exactly the set of all sentences with [3, A and ..~ that 

hold in M , .  

PROOF. One direction is (60). Assume 0 to be a complete G,  theory. Construct 

a Makinson-Scott model of O, i.e. T is the set of all complete and consistent G,  

theories, ARA' iff [:]~bEA ~ ¢ ~ A '  and for atomic ~b [~b]A = 1 iff ~b~A, the 

result then holds for any ~.  

Define < ,  r on T. By (75) we get an M* structure. By (74) we still have [qS]a 

in M , =  liff~b~A. 

THEOREM 77. G, is an extension of T which is decidable, finitely axioma- 

tizable, normal and lacks the final model property. 

Note added in proof. Kit Fine has found extensions of $4 and of the intui- 

tionistic propositional calculus that lack the f.m.p. The present method can be 

used to obtain extensions of K. Fine's systems that are decidable and lack the 

f.m.p. 
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