ON DECIDABLE, FINITELY AXIOMATIZABLE, MODAL
AND TENSE LOGICS WITHOUT THE FINITE MODEL
PROPERTY

PART I

BY
DOV M. GABBAY

ABSTRACT
Decidability results in modal and tense logics were obtained through the finite
model property. This paper shows that the method is limited, since there exists
a decidable extension of modal T that lacks the finite model property. The
decidability of the system is proved through a new method, the reduction method,
(using a theorem of Rabin).

Introduction

We give an example of the incompleteness of the technique of using the finite
model property (f.m.p.) to prove decidability in modal logic. We present a decidable,
finitely axiomatizable normal logic between Tand S4 which lacks the f.m.p. Our
strategy is the following:

We shall define an auxiliary tense system M, in §1. In §2 we shall provide it
with semantics. In §3 we shall show (by methods of [3]) that it lacks the finite
model property. In §4 we show that M, is decidable. Finally in 5 §we shall con-
struct a modal system G, which is a finitely axiomatizable extension of T which
lacks the fiinite model property. We shall also give a 1-1 interpretation of G, in
M, , and thus obtain the decidability of G,.

The particular systems M, and G, are of no special importance (except for the
fact that G, is between T and S4). The method of proof however, especially the
proof of decidability, is of great interest as it presents a new technique for ob-
taining decidability results in modal logics.

1. The system M,

Our language contains, besides the connectives of classical propositional logic,
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the connectives G¢ (¢ will always be true) and Y¢ (¢ was true yesterday). Our
axioms are:

all the truth functional tautologies, modus ponens, substitution and:

Axioms.*

1) Glo—¥) - (G — GY)

2) Y(-¥)—> (Yo YY)

3) G¢ - GGy

@ o> ~G~Yo

(5) ~G(G A ~d); ~Y(¢ N ~9)

6 Y~¢ &~Yo

(N ~¢->Y~Go

®) ~G~Y~dp->~hpV ~Goh

(9) F¢=t+Go, Y. (thisis a group of inference rules).

2. Semantics

Let T be any nonempty set (thought of as a set of moments of time), T - struc-
tures are of the form 4 = (4,, <,r,0) te T where A4, is a function assigning
values 0, 1 to each atomic sentence. < is a binary relation on T, r is a unary
function on T, O€ T and the following holds:

(10) < is transitive

(i1) Hx)y<x, xeT

(12) Vxdy(x < y)

(13) VxIy(x = r(y)).

(14) x<y->(x<r(y) or x = r(y)).

Satisfaction is defined as follows:

Let A be a T-structure and let x e T, then the value of ¢ at x (notation [¢],)
is defined by induction:

(15) [p], = value given by A_, for atomic p.

(16) [¢ AY]e=1iff [¢], =1 and [¥], = 1

[~¢]. = 1l [¢] [¢]. =0
(17) [G¢]l, =1 iff [¢], =1 for all ysuch that x <y
(18) [Yg], = 1ifl [l = 1.

* QOur axioms and conditions are not independent. We do not bother with independence in
this paper, as all we want is to show the existence of a certain kind of modal logic.
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We say that a sentence ¢ is valid iff for all nonempty T and all T-structures
[¢]o = 1.

THEOREM 19. All axioms are valid.

PRroOOF.

(3) follows from (10).

(4), (5) follows from (11), (12) and (13).

(6) follows from r being a function

(7) follows from (12).

(8) follows from (14).

The reader can verify that the inference rules preserve validity.

DEFINITION. A theory A is complete iff for all ¢, peA or ~peA.

LEMMA 20. Let A be a complete and consistent theory then:

(a) If ~G¢eA then there exists a complete theory A* such that ~¢peA?
and for every \y such that Giy € A be have that y € A® .

(b) If ~Y¢peA then a A, exists with similar properties.

(¢) There exists a complete and consistent A such that

(cl) GyeA->yYekX

(€2) yeA-Yyeh.

Proor. The way to get (a) and (b) is well known and is due to Makinson
and Scott. To get (c) we follow Lemmon-Scott:

Assume {y |Gy eA} U {Y¢|peA} is not consistent, so for some y,¢; we
have:

Ry A A= ~ (Yo A AYy)

Ry A A, = ~Y (1 Ao A i)

FGy A A = G~ Y(dy A s A D)

FGY A ANGYy > G~ Y(Py A A )

F~ G~ Y0y A A > ~(GYy A A GYy)

but Fd A Ay > ~G~Y(dpy A+* Ady). S0 ~ (GYy A= AGY,)eA
but A ¢;€ A, a contradiction.

Now extend this set to a complete theory A®.

DernITION 21, A < A’ iff for every ¥, GYye A - yeA' *

LEMMA 22. A< A’ and A" < A" implies A <A".

* From now on A, O, .. . range over complete and consistent theories.
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ProoF. Use FG¢p —» GGo.
LemmA 23. For any ¢,y If ~Y¢deA and ~ Yy €A then A, = A,.

Proor. Let acAy, ~u€eA,.

We know that for all 8, Yfe A —» fe A, and BeA,. Therefore ~ Yae A and
sosince F ~Yo < Y ~a wegetthat Y ~aeAandso ~aeA,.A contradiction.

From now on let us call the unique theory of (23), A,.

Lemma 24, If ~YdeA then Ay<A.

Proor. Let GyeAy, and ~yeA. Since F~y - Y~ Gy we get that
~ Gy eA,, a contradiction.

LemmA 25. If ~Y¢eA and A® is as in Lemma (20c) then (A%), = A.

Proor. Let ~ae€A, and ae(A’),. Now ~aecA implies Y ~ e A° by con-
struction. But F Y~ o <> ~Ya and so ~ Yae A® and so ~ae(A%), by (23), a
contradiction.

LEMMA 26. © <A > (O <A, or © = A,).

ProOF. Let Gy e® and ~y €A, and a€® and ~aeA,.
FBAGBE— G~ Y~ B (8)

Since (x V Y) A Gla V ) e © we havethat ~ Y~ (¢ ¥)eAandso Y(a\V P)c A
and so a\V y€A,, a contradiction.

Let ® be a given complete theory. We now turn to construct a model 4 of ©.
One simple way of doing this is to take Tas the set of all consistent and complete
theories, to define < on T, to define r, etc. and get the model in the usual manner
using Lemmas 20-26. Since we are interested in proving that M, is decidable

we must construct the model more carefully. We begin with some definitions.

Let N* be the set of all finite sequences of natural numbers and let the empty
sequence Ae N*. Let * denote concatenation of sequences, and define xe N*,
the following functions called successorship functions:

(@) y = ro(x) = x%0).

(®) y =px)=x*2n+1), n20.

() y=s5x)=x*2n+2), n=0.

y is said to be a successor of x.

For each complete and consistent theory A and each ~G¢ e A, let A® be one
fixed theory fulfilling (20a). Similarly choose for each A a fixed A° as in
(20c). From now on A? and A® become unique whenever defined.
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Let © be a given complete and consistent theory. Let M be the smallest family
of theories such that 6e M and whenever Ae M we have that A, NeM
and also A’ e M for any ¢ such that ~GpeA. M is denumerable; so let
I';,T,, -+ be an enumeration of the elements of M.

We now proceed to define a subset T = N* and a_function A: T — M as follows

Stage 0. Let AeT and let A(A)=0.

Stage 1.
a) Let x = ry(A)eT and let A(x) = A(A),
b) If I'e M, is such that (I')y = A(A),
then let x = s(A)e T and let A(x) =T,
c¢) Let I', be such that
1) T, is of the form A(A)? for some ¢.

2) For no k do we have A(A) =" )y:--v  (ktimes)
then let x = p(A)eT and let A(x) =T,.

Stage n +2. Let x be a point in T that was put in T at stage n -+ 1. We
distinguish two cases. Let x be a successor of a y e T.

1) If x is an rq or p, successor, repeat the construction as in stage 1 using A(x)
as if it were @ and define the successorship relation like inthe case of © of stage 1.

2) In case x isan s, successor, do as in previous cases except do not follow
instruction (a) of stage 1. Thus in this case ry(x) is not in T.

DEFINITION 27. Let <, be the relation on T of being an s, or p successor (i.e.
no use is made of ry). Let £ be the transitive closure of <, .

Let y > x be the transitive closure of the relation of being an r, successor (i.e
x = ro(y) for some m), (we write >since ry is in the past of yand so y >x means
x is the past of y, x £ y means the same).

LemMA 28. x £y — A(x) < A(y).

PROOF. By construction and (22), and definition of A® and of s successorship.
LemMA 29. x>y — A(y) < A(x).

Proor. By construction and by (22) and (24).

DEFINITION 30. (a) r(x) = ro(x) if ro(x) exists (note that in case x = s5,(y)

for some n we do not construct ry(x)), and r(x) = y if x = s,(y) for some n.
(b) Define x < y as follows:



Vol. 10, 1971 MODAL AND TENSE LOGICS I 483

(bl) If there exists a finite set of points yg,y, -y such that y, > x and
Yo = yrand y; >y, and y, < yyand y; >y, and y, < ys - until y.

(b2) If there exists a finite set of points yg, y, --- y such that x < y, and
Yo>Y1> Y1 S V2, Y2 >3, V3 S Yoo until y.

THEOREM 31. (2) A({(x)) < A(x). (b) x <y — A(x) <A(y).

PRrRooF.* (a) follows by (24) and (25).

The proof of (b) is by induction on the number of points yy-- y,.

Case n = 0. In this case y, = y and follows from (28) and (29).

Case n+ 1. We distinguish two subcases:

(D) y,>y = Pys1, We assume y = ro(y,), m = 1. In this case we know by
the induction hypothesis that A(x) < A(y,). We want to show that A(x) < A(y),

Now since n = 0 we have that y,_, < y, (y,-, may be taken as x in case
n = 0).

Let y' be the £ predecessor of y, so A(y") < A(y,) by construction. Since
y.>y we have that rq(y,) exists and that (A(y,), # A(»’). So by (26)
A(y") < (A(y))y = A(ro(y,)) . Assume by induction that A(y”) < A(ry(y,)) and show
that A(y') < A5 1(y,)). By construction A(y’) # A(ri*'(y,)) and therefore by
(26) we have A(y)<A(G'(.), since A(GT(yn) = A((,),. Thus
A(y") < A(y) and by (24) and by (29) and the induction hypothesis for y’, we
get A(x) < A(y).

(IT) Inthiscase we assume that y, < y. By the induction hypothesis A(x) <A(y,)
and by (28) and (22) A(x) < A(y).

THEOREM 32. Notice that in the definition of x <y we used a set of points
Yos Y1 '+- ¥ with a special property. If case (b2) of (3) held then y, > y,. This
means that y, is “‘higher’’ than y, in the tree (it is ro(y,) successor), and each
Vu+1 is higher in the tree than y,. In the case of (bl) again we get that y, is
higher in the tree than yo and y, . is higher in the tree than y,. So if we take
xpy to mean y is higher than x (through any kind of successorship), we get
that yopy, -y (i.e., they are linearly ordered).

DEerFINITION 33. We now construct the model 4. Let T be our tree, let <, r
be as in definition (30). Define [ p], = 1iff pe A(x), for a propositional variable p.

Lemma 34, A4 is a well defined model.

* T am indebted to the reviewer for correcting the proof.
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PRrOOF.
(10) holds since by definition < is transitive.

(11) also holds by the definition of r(x) (30).
(12a) holds since F ~ G(¢p A ~¢) and (13) since A® is always defined and € M.
(14) holds; the proof is as follows:

Assume x < y so for some y,--- y,_, the following holds:

/
// !
* /
/
/
Y
}/
/o
/
/
/
S
7Y,
J 2
//
X /o
\\\ /
/
A
0N\ /b
N\ /
N/
N
Yo
Fig. 1

x =r5(ye) m = (ie.. x may be y, which is b2 of (30)). yo £ ¥, V1> V2V, Sy
until y.

Case n = 1. In this case no matter whether r(y) = ro(y) or is the predecessor
of y we have that x < r(y).

Case n=0.1ie, y=y,.

Now if x = rg(y,,) with m 7 0 then x < r(p).

If x = y, and y is not a successor of x then again x < r(y). In case x = y,
and y is a successor of x then either #(y) = ro(p) in which case x < r(y) by (26)»
or r(y) = x which is (14).

Lemma 35. [o], = 1 iff ¢eA(x), for all ¢.

Proor. For propositional variable this holds by definition. A, ~ present no
difficulties.
Let G¢ e A(x) and let x < y. Then by (31), A(x) < A(y), i.e., ¢ € A(y) and so

[¢], =1.
Let ~GoeA(x). So ~¢pe(A(x)’=T. If A(x) # Ty--y (k timss) for all k,
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then by definition I = A(y) for x <, y, otherwise A(x) = I'y--- y (k times).Let
I'=TIn;eM and Ty --- y (i times) be I'n;e M (M is closed under the A » Ay
operation). Then by the definition of stage n, case (1b) we have that
Y =5,,(5,.(-8,(x)-)eT and A(y) = Fand x £ y.

Let Y¢ € A(x) so ¢ € (A(x)),; regarding r(x), if r(x) = ro(x) which is (A(x)),
we are finished and if r(x) is the predecessor of x, then it is the case only because
(A(x)), equals the predecessor of x and so again we are finished.

3. M, lacks f.m.p.

We use the results of Makinson [3]. Makinson extended 7T with
CI(0%¢ = [13¢) A (¢ — [1°¢ and this system lacks f.m.p., since [Ip, = [1Ip,
is not provable and any mode! in which it is false is infinite.

Our use of this result is as follows: we interpret Makinson’s system in M,
in such a manner as to have that all Makinson’s axioms hold and [(py, —» [1p,
does not. Therefore there cannot be a finite model of M, in which [Jp, - (Op,
is false since this gives rise to a finite model of Makinson’s sytem in which [(p,
~ [[p, is false.

DEFINITION 36. (¢ = def Y(¢ A Go).

THEOREM 37.

(@ +tOop—¢

(b) FO(@ —¥)—~(O¢ - Y)

(© FO(O% > O¥) A0~ 0%

d) t¢ =t

(e) +—=0O¢ - D¢

Proor. We shall prove only (c) and (e).
By definition (36) we see that:

(38) [0l = L iff [¢], = 1 for all y
such that r(x) <y or r(x) = y.
Assume now that [[J¢], = 1 and [[((1%¢ —» [13¢)], = 1 and [[1%¢], = 0.
By (13) x = r(x,) for some x,. Consider Fig. 2.
[[1%¢]. = Osoforsome ysuch that y = r(x)or»(x) < y we have that [[¢], = 0.
Now for some z such that z = r(y) or r(y) < z we have that [¢], = 0. We
distinguish some cases:

(@) rG)<y:
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X0

Fig. 2

By (14) r(x) <r(y) or r(x) = r(y).

(al) r(x) < r(y): Since r(y) = z or r(y) <z we get that r(x) < z and so
[#], = 1 since [(J¢], = 1. A contradiction.

(a2) r(x) = r(y). Again if r(y) < z, a contradiction and if r(y) = z, again
a contradiction.

(b) Therefore r(x) = y: So r*(x) = z or r’*(x) <z holds. This yields that
[[33]. = 0. Since r(xo) = x <x, we must have that [[(1*¢ — [13¢],, = 1
and therefore [[1%¢],, = 0. So at some u such that u = x or x < u[[J¢],= 0.
u cannot be x and so x < u. Therefore for some » such that v = r(u) or r{u) < v
we have that [¢], = 0.

(¢) Case v = r(u): Since x < u, by (14) we conclude that x = r(u) or x < r(u)
and since r(x) < x we get that r(x) < r(u) and so r(x) <v.

(d) r(u)<wv: In this case we also get that r(x) <v. Now we have a contra-
diction since [(J¢], = 1.

To show that [Jp — [J[Jp is not a theorem let {pl,, = 1 and [p], =1 for
all y such that r(x) <y. Let [p2y = 0 so [(Op —» OJ0Op]. = 0.

4. Decidability of M,

Let N* be the set of all finite sequences of natural numbers. Let * denote
concatenation of sequence. Define p,, s,, 1y as before, i.e., p(x) =x*(2n + 1),
5,(x) = x*(2n+2) and ro(x) = x * (0). Thus, p,, s,, rg, 1 =0 are functions:
N* = N*. Let A denote the empty sequence. We shall refer to p,, s,, 1y as suc-
cessor functions. Let x <, y mean y = p,(x) for some n,x <, ymean y=s,(X)
for some n and xpy mean x <;y\/ x <, y. Let < be the transitive closure of
p. Let R be the transitive closure of xpy VV y = ro(x).

THEOREM 40. (Rabin [4]). The monadic second-order theory (with variables
for finite sets also) of (N*, A, S, Pm» 7o, <, R) is decidable.
In order to get that M, is decidable we have to express its semantics in this
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language. We gave the completeness theorem in §2 with anticipation for this

section.

DESCRIPTION OF SEMANTICS
(41) Let x >y mean Im(y= rg(x)). We can define this in terms of the other

relations.

(42) Let T, < N* be such that the following holds:
(a) xeTy—sg(x)eTy
(b) 0eT,
(¢) if y¢ T, then no successor of yisin T,
(d) if xeTy A x £,y then ry(y») ¢ T,
() if xeT, and x =y then ro(y)e T,
) ro(A)eTy. VxIu(x < u).
Define r(x) = ro(x) if ro(x)e T, and r(x) = y = predecessor of x otherwise
(i.e.in case y £ ,x) for xe T, .
Define x < y iff there exists a finite set C, linearly ordered by R, such that:
(1) 1If yo is the first element of C, then either x = yq or x = rg(y,) for some m.
(2) For every z,,2,,2z, € C such that z; is a successor in C of z; and z, is a
successor in C of z, the following holds: if zy £ z, then z; > z, and if z5 > z,
then z; < z,.
(3) For every zg,z; € C such that z, is successor of z, we have that z, > z,
or zo < z4.
(4) yo = the successor of y, in C.
(5) yeC.

REMARK 43. (42) (a)—(f) are all definable in our language. Similarly r(x), x < y
and whatever is needed.

THEOREM 44. M, is complete for this semantics.
Proor. Qur definitions here are exactly the definitions of §2 (for the definition
of x < y see Theorem 32). So Lemmas 43 and 35 give us completeness.

THEOREM 45. M, is primitively recursively decidable.

Proor. We express in the language of N* the assertion that ¢ is true in all
models for any formula ¢ . To do this we associate with any formula ¢ a formula
¢*(y) in the language of N* with y free as follows:
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(p)* = ye C,;, with p,; a propositional variable and C; set variable.

(@ NYY* = ¢* Ay*

(~@)* = ~o*

(GP)* = yeTo A(Vz e Ty)(y < z - ¢*(2)), where T, is a set variable and
< is the relation defined in (42)-(43) above.

(Yd)* = (z = r(y)) AN9p*(2) where r is the function defined in (42)-(43) above.

What ¢*(y) says is that ¢ is true at the point y. (The reader can verify this by
induction, taking C, = {x | p; true at x}). We shall now say that ¢ is true at all
models, i.e., (YT, such that (42) holds) (VC, -+ C, & Ty)(Vye Ty)d*(y), where
¢ has p,---p, as atomic propositions. Now since this sentence is decidable
in N*, M, is decidable.

5. A decidable, finitely axiomatizable extension of T without the finite model
property

We have seen in the preceding sections that M, does not have the f.m.p. and
is decidable. We have interpreted Makinson’s system in M, in such a manner
as to have Theorem 37.

In this section we show that G, , the extension of Makinson’s system, obtained
by taking all modal sentences holding in M, is finitely axiomatizable.

G, is the extension of Makinson’s system with the following axioms:

(52) PAOYNA~DTY —>o(0d A~TW)
(33) A AW A~DTW > o(0d AT A~ A D%)
9 WA~DOY-> OO~V O~OF - ~a)
(55) W A~DWA o(Ox A~ DY)~ D%
(56)  O¢ AW A~ —~ (O > O4).
THEOREM 60. Taking (¢ as Y(¢ A\ G§) we get that all axioms of G, are
valid in M,
LemmAa 61. Let [[(0¢]. = 1,[~0%¢1, = 1 then r(x) is the only point y
such that [~[O¢], =1 and y = r(x) or r(x) <y hold.
PROOF. See Theorem 37, Cases(a) and (b).

Let us now examine each axiom.

Axiom 52. If [¢ A Oy A ~O% ], =1 then [~OW ATl = L.
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Axiom 53. 1If the antecedent is true at x then the consequent is true at x,

where r(xy) = x.
Axiom 54. This follows from (38) and from (61).

AxioM 55. Let [(Ox A ~[0%], =1 and let [o (T A ~Y], = 1, so for
some y such that r(x) = yor r(x) <y [Ca A ~[Y], = 1, by (61) y = r(x).
Therefore [ [,y = 1 and so for every z such that r’(x) = z or r*(x) < z we
have [a], = 1. In particular this holds for r(x) and all z such that r(x) < z. So
[Oe], = 1. Now we cannot have [~ [J%x], = 1 since then by (61) we shall
have [~ [Oaj, = 1.

Axiom 56. [Op A OY A ~ %], =1 implies [~ Oyl =1 and
[¢].y = 1 and by (61) r(x) <y Ay # r(x) implies [(¢],, = 1. Conversely
[O¥], = 1 implies r(x) # y and r(x) < y. Now assume [[J¥/], = 1 so r(x) <y
and r(x) # y and so r(y) = r(x) or r(x) < r(y) and therefore for all z such that
r(y)<zorz = r(y)wehaver(x) < zorr(x) = zandso[¢], = 1.So [(0¢], = 1.

We now want to show that the interpretation (60)is ifaithful. For this purpose
we give a series of lemmas and a Henkin-Scott type completeness proof and con-
struct a model with relations < and r, that fulfill the requirements of the semantics
of M, and such that the modal accessibility relation R of our model is related
to < and r exactly according to the syntactical translation of (60).

LeMMA 62. Let A be a complete theory that [y A ~[J*y€A. Then the

following set is consistent.
{o| OxeA} U {~W}U{cd|peA}.
ProoF. Otherwise

Fay Avr Ao, > (0 A A O, = L)

also
Fo(r A Adw) = 0 ¢y Ao Aoy,
therefore
FA = QNG D), FOA ¢~ DN ¢ 09).
So

O(e A ¢ — W) eA.
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Since A¢;e A we get by (51) o (o A ;¢0; A ~W) e A that is
~0O(~ 0/:\ ¢V OY)eA or ~[I(o /\ ¢ > CW)eA,
a contradiction.
Extend this set to a complete theory and denote it by A,,.
LEMMA 65. In notation of (62) the following is consistent

{e| Qe A} U {D% A ~O%} U {~0OB| ~peA} U {T*|DyeA}.

ProOOF. Otherwise
L /\ o A D% A ~DO3% A /\ Oy — V08
also

Fv,0B - OV b

s0
F /\ o> (Y A~DOWADC? /\ vi—> OVib).
We conclude by necessitation and the fact that [ A ;a; €A that
DO A~OYACA n—>0OVE)
isin A.

Now by (53) since [JAy,€A and ~(V B)eA and [y A ~[I*Y €A we get
that

(o~ (VB)ADTW A ~DO3% AP Ay)eA.
And so

~O(v o ~ VBV ~(OWADW AL A vw)ea

¢
that is ~T(O A ~DT3W AEA Y~ OV B)eA

a contradiction.
Extend this theory to a complete A°.

DEFINITION 67. ARA’ iff (def) [lpeA - peA’.
Lemma 68. A, RA, ARA,, A°RA, ARA®.
PrOOF. By construction.

LemMMA 69. Ay, = A,,.
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PrROOF. Assume [y, A ~[0%; A Y, A ~[O%, €A, and let aeA,, and
~OCEA¢,2.
By (54) we have that
(I~ » w)eA or T~y = ~a)eA.

Now since ARA,,, the second cannot be in A so [I(~[J¢; > «)€A. We now
conclude by (56) and (68) that [y, «> [y, €A, and (~ [y, — a) €A, which
contradicts ~aeA,,.

LeMMA 70. (A%)g, = A.
ProOOF. We have to show that
{a|OneA}u{~OW}IU{od|peA} c A,
This follows by construction. So since [J%) A ~ 13 e A® we get that Ay

is defined and unique.

DEFINITION 71. We now define r, and <. r(A) equals A, if it exists and A
otherwise (i.e. if for no ¥ do we have [J¢ A ~[1*YeA). Define A< A’ as
follows:

(@ if A=r) and rI) #T (i.e. A=T,) and 'RA" and A’ % A then
A <,A’. In particular we get that I, <, I’ (IRT always holds).

(b) if (") = I" then if TRA’ then I <,A’. In particular I' < T".

(c) Let < be the transitive closure of <, U <,.

REMARK. We have in particular that r(A) < A.
LemmA 72. If A =) and A<A’ then TRA'.

PROOF, Since < was defined as the transitive closure of <,U <, it is enough
to examine a few cases (i.e. proof by induction on the length of the sequence
leading from A to A’).

The first two cases deal with length 1.

Case 1. Corresponding to (a) of (71) it is clear that 'RA’. Notice that in our
case the < sequence is of length 1 and begins with instance of (a) and so A # A’.

Case 2. Corresponding to (b) of (71) again 'RA’ but we may have A = A’.

The remaining cases deal with the induction step.

Now assume A <A, <-- <A, <A/, by induction hypothesis assume that
['RA, holds and if A # I' (i.e. the sequence begins with use of <) then also
AFA,.
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Consider case 3, for A <,A; and D, <, A",

Case 3. Assume that 7(I') = A and TRA, and A # A, and A, # ®, and
A, # A’ and ORA’. Also assume that A = T,.
We want to show that TRA’ and A # A’.

Fig. 3

Let [JfeI". We must show that SeA’.
(a) [T*BeT:so [JfeA, so we have in @ the following sentence:
Ca A ~CZA 0 (OB A ~Oe) for some o
since A,=r(®) and A, 3 @ holds. So by (55) [*Be® and so [JfeA’ and so
peA’.

() ~[O?Bel. Therefore I'; = A. Now by axiom (56), since A =T,
(OB« L)eT'. We want to show now that [y e A,. Now since A, £ A,
there exists a §, €A A ~de A, and so by axiom (54) [~ [ — &) eI and so
~ [y ¢A, since ~deA,. We conclude that [y € A, and therefore [1feA,.
Now continue as in (a).

Now we have that [y €A, (see (b) above) therefore (1% € ® by (b) above
and so (Jy € A’ and therefore AzA’ (which is the second thing we had to prove).

Consider case 4 for A <,A; and A, <, A’

Case 4. Assume that #(I) =T, = A and T'RA, and A # A, and A,RA’
and r(A,) = A,

/F

r, = & A——A

Assume (1 €T, we must show that feA’.

In this case again we have [y €A, and so [Jfel’ » [JfeA(by(a) and (b)
of case 3).

To show that A % A’, notice that since #(A,) = A,, [WWeA, - [Py eA,
50 [Jy € A’ that is again A # A’ since ~[JfeA.
Consider case 5 where A <,A and A, <,A".
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Case 5. Assume r(A) = A, r(®) =A, = ®,, and ®RA’ and by induction
hypothesisAR A, .

v

N
JAN X /
®Cx= Aﬂ

Fig. 4

(e.g. the analogue of Case 3); we must show ARA’. But in our case, #(A) = A so
[JfeA - [J*fe A and so we have that (a) of case 3 holds. Consider case 6 with
A<,A; and A, <, A"
Case 6. Let r(A) = A, ARA,, r(A,) = A,.
In this case [1feA - [1*fe A and so [JfeA, and so [J*feA, and so [JfeA.
Thus Lemma (72) is proved.
THEOREM 73. A<TI and A= r(l') > A<rI).

Proor. If A <T we have a sequence leading from A to T,
Case 1. The sequence begins with r(A) = A, (Case b).

Iy r

Fig. 5

Let us show that ARr(I"). Let [JfeA. We have [JfeA— [1?°feA - (JfeT
— Ber(I'). Now we have ARrI') and so A < r(I'), by definition.

Case 2. The sequence begins with case (a), i.e., A = r(®), A = ®. So by
what we proved in (72) (more specifically the induction hypothesis of (72))

-
<
"
>
[sp]

Fig. 6
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We get ORI" and A # T

Now assume [JfeA and ~fel’, and so ~[JfeI". Now since ®RT" we have
~[]%Be® and therefore @, = @, i.e. ~[JfeA. Now A # T, so for some J,
deA, ~5 ¢I'. We then have, by (54) ((~[J8 — 8)e®, so ~[ 8 - eI so
6el’, a contradiction.

So we have that ART, and since I', # A we get that A <T,.

THEOREM 74. ARA’ iff (r(A) = A’ or r(A) < A”).

ProoF. If ARA’ and r(A) # A’ then r{A) <A’ by definition, if r(A) = A’
then ARA’. If r(A) < A’ then ARA’ by (72).

THEOREM 75. < and r fulfill Theorem 75. < and r fulfill.(11)-(14).

ProoOF.

(10) by definition

(11) by (71)(a) and (b)

(12-13) by (70) and the definition of r.
(14) by (73).

THEOREM 76. G, is exactly the set of all sentences with (1, A\ and ~ that
hold in M,.

ProOF. One direction is (60). Assume 0 to be a complete G, theory. Construct
a Makinson-Scott model of @, i.e. Tis the set of all complete and consistent G,
theories, ARA’ iff [lpeA — ¢pe A’ and for atomic ¢ [¢], = 1 iff p€A, the
result then holds for any ¢.

Define <, r on T. By (75) we get an M* structure. By (74) we still have [¢],
in M, =1iff geA.

TueOREM 77. G, is an extension of T which is decidable, finitely axioma-
tizable, normal and lacks the final model property.

Note added in proof. Kit Fine has found extensions of S4 and of the intui-
tionistic propositional calculus that lack the f.m.p. The present method can be
used to obtain extensions of K. Fine’s systems that are decidable and lack the

f.m.p.
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